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ABSTRACT

Protoporphyrin IX  Distribution in Rat Brain Following the 
Administration of 5-Aminolevulinic 

Acid and its Hexylester

by

Scott A. Friesen

Dr. Steen J. Madsen, Examination Committee Chair 
Assistant Professor o f Health Physics 

University o f Nevada, Las Vegas

Rowett nude rats were injected intra-cranially with varying concentrations o f 5-

aminolevulinic acid (10, 20, 99, 199, 398 mM) and its hexylester (6.6, 13. 66, 132, 265

mM). Toxicity effects o f these compounds were examined based on animal behavior and

respiratory distress. It was determined that the maximum tolerable dose for intra-cranial

injection is 99 mM S-AminoleN'ulinic acid and 66 mM h-ALA.

Human glioma spheroids were grown in vitro. After incubation, spheroids were sized 

(250-350 pm) and injected into the rat brain (10 spheroids per injection). Following the 

induction and development o f glioblastoma multiforme tumors in vivo, Rowett nude rats 

were injected with the maximum tolerable ALA or h-ALA dose. Animals were sacrificed 

four hours post-injection and intact brains were removed. Fluorescence microscopy was 

performed to quantify PpLX production. Results indicate that PpIX production in tumor 

tissue is greater following 5-aminolevulinic acid administration than h-ALA. However, 

the tumor-to-normal tissue uptake ratio is superior following injection o f h-ALA 

(7.6±2.0:1) compared to 5-aminolevulinic acid (2.4±1.1:1).

in
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CHAPTER 1 

INTRODUCTION

1.1 Oven iew o f Photodynamic Therapy 

Photodynamic Therapy (PDT) involves the administration o f a tumor-specific 

photosensitizing agent that, upon subsequent activation by a particular wavelength o f 

light, results in tumor tissue necrosis. .Although PDT is a relatively new cancer treatment 

modality, the use o f photosensitizing agents in combination with light irradiation has 

been used in both diagnostic and therapeutic medicine for the past 3 decades ( Dougherty 

et al 1998). Current uses o f PDT include treatment o f skin cancer and dermatological 

diseases, esophageal cancer, bladder cancer, and colon cancer. The degree o f efficacy 

associated with PDT depends on several factors including the type o f photosensitizer 

used, concentration o f the photosensitizer in tumor tissue, tissue oxygenation status, 

fluence o f light used for irradiation, and fluence rate. For the treatment o f many tumors, 

longer wavelengths o f light are required for adequate tissue penetration. A strong 

attenuation occurs in tissue up to 580 nm because o f absorption by hemoglobin bands, 

followed by an increase in light penetration over the 600-680 nm range (Moore et al 

1997). Shorter wavelengths o f light, such as green light, have been utilized where 

relatively deep tissue penetration must be avoided (e.g. in bladder cancer and colorectal 

tumors).
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1.1.1 Photochemistry 

Following light irradiation, the absorption o f a photon causes the activation o f the 

photosensitizer to an excited triplet state (Oleinick and Evans 1999). The triplet may 

undergo one o f two types o f photochemical reactions. The tvpe 1 reaction involves 

electron transfer between the photosensitizer triplet and surrounding molecules. This 

redox reaction yields a substrate radical that participates in radical chain reactions. These 

radicals interact primarily with oxygen and generate reactive oxygen intermediates such 

as H :0 :, * 0 :,  and *0H.

The type II mechanism, or singlet oxygen hypothesis, has been w idely accepted as the 

primary photochemical mode o f PDT-induced damage (Weishaupt et al 1976. Moan et al 

1992. Henderson and Dougherty 1992. Ochsner 1997. Hasan and Parrish 1997). 

Molecular oxygen in the singlet state ('O :) is produced when a photosensitizer triplet 

interacts with ambient molecular oxygen. Although 'O; is a nonradical, it is highly 

reactive and can damage cellular structures. Since O: has a maximum diffusion range o f 

20 nm (Moan and Berg 1991 ) and a lifetime less than 0.5 ps (Patterson et al 1990). and 

human cells range from 10 pm to 100 pm in diameter, the location at which O: is 

produced determines which structures in the cell are damaged.

Photosensitizers have also been reported to exist in high concentrations in tumor 

vasculature (Moan and Berg 1992, Henderson and Dougherty 1992, Hasan and Parrish 

1997). Therefore, singlet molecular oxygen generation can also occur outside o f tumor 

cells in the epithelial cells o f vascular tissue. In this case, cell death occurs indirectly by 

eliminating the tumor's blood supply (blood flow stasis, vasculature collapse, or leakage).
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1.1.2 Photobiology

The specific mechanism o f cell death following light excitation o f photosensitizers 

has been the focus o f recent PDT-related research. Photodamage may cause cell death by 

either necrosis or apoptosis - the mode o f cell death being dependent on a number o f 

factors including cell type, photosensitizer type and concentration, subcellular 

localization o f the sensitizer (Kessel et al 1997, Kessel and Luo 1998, Kessel et a l 1998) 

and light dose (Luo and Kessel 1997, He and Oleinick 1995). Necrosis involves cell 

membrane fragmentation followed by the release o f cellular contents into the surrounding 

medium. This process usually elicits an inflammatory response resulting from the 

interaction o f lysosomal enzymes with adjoining cells. .Apoptosis (programmed cell 

death) is initiated by cellular signals, resulting in organized DNA and cellular 

fragmentation followed by the encapsulation o f these fragments into apoptotic bodies by 

surrounding cells (Kerr ct al 1972. Williams 1991. Vaux and Strassner 1996). Originally, 

it was believed that PDT-induced cell death proceeded by cellular necrosis (Moan and 

Berg 1992. Henderson and Dougherty 1992). However, an apoptotic mechanism has 

been implicated in PDT-related photodamage (.Agarwal et al 1991. He et al 1994. Zaidi et 

al 1993. Luo et al 1996). .Apoptosis may be induced by diverse stimuli such as radiation, 

chemotherapy (Wyllie 1985, Fisher 1994), and PDT (Noodt et al 1996). Several studies 

ha\e supported the apoptotic mode o f cell death following PDT in vitro (Agarwal et al 

1991, He et al 1994) and in vivo (Webber et a l 1996, Zaidi et al 1993). It has been 

demonstrated that the apoptotic process is triggered by a mitochondrial component called 

cytochrome c (Liu et al 1996, Yang et al 1997, Kluck et al 1997). Thus, therapies 

resulting in mitochondrial damage, and subsequent release o f cytochrome c, are like ly to
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induce apoptosis. As previously mentioned, the site o f cellular damage is dependent on 

photosensitizer type. Some sensitizers have been shown to elicit a rapid apoptotic 

response whereas others induce membrane and lysosme damage which lead to necrosis 

(Kessel and Luo 1998). The apoptotic mode o f cell death may be preferred to tumor cell 

necrosis in PDT (especially in the brain) since the former does not result in an aggressive 

inflammatory response or the release o f intra-cellular contents into the extra-cellular 

environment (Webber et al 1996).

1.1.3 Photosensitizers 

Photosensitizers may be administered locally or systemically (intravenously, 

intraperitoneally, or orally) depending on the treatment. Traditionally, porphyrin-based 

photosensitizers such as Hematoporphyrin Derivative (HpD) and its purified version. 

Photofrin* (QLT PhotoTherapeutics Inc.. Vancouver. B.C., Canada) have been used 

almost exclusively in PDT. While HpD and Photofrin are effective clinical PDT drugs, 

several limitations exist. Associated with these compounds is a relatively poor light 

absorption at long wavelengths (> 600 nm). chemical complexity, and prolonged 

cutaneous photosensitization (4-6 weeks). Such a lengthy skin sensitization period 

adversely affects patients’ quality o f life. Due to the drawbacks o f traditional porphyrins, 

other photosensitizers are currently being evaluated for use in PDT. Endogenously 

synthesized sensitizers such as 5-aminolevulinic acid (ALA) and its esters have been 

studied extensively and utilized effectively in many cancer treatments, primarily skin 

lesions (Peng et al 1997, Peng et al 2001). Other newly developed photosensitizers 

include tin etiopurpurin (SnET2), benzoporphyrin derivative-monoacid ring A (BPD- 

MA), lutetium texaphyrin (Lu-tex), and tetra(m-hydroxyphenyl)chlorin (mTHPC).
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A ll human cells except mature red blood cells are capable o f synthesizing heme. In 

the first step o f the heme biosynthetic pathway. ALA is formed from succinyl Co.A and 

glycine. The potent photosensitizer, protoporphyrin IX (PpIX). is produced from 

protoporphyrinogen IX in the second-to-last step o f this pathway. In the last step o f the 

pathway iron is incorporated into PpIX under the enzymatic action o f ferrocheletase in 

the mitochondria. Due to the limited capacity o f ferrocheletase. the exogenous 

administration o f ALA results in an intra-cellular accumulation o f PpIX. Compound 

selectivity is achieved through an enzyme activity difference between tumor cells and 

normal cells. Ferrocheletase activity and its capacity for incorporating iron into PpIX is 

limited in tumor cells and, therefore, results in a greater accumulation o f PpIX. Further, 

the intermediary enzyme porphobilinogen deaminase exhibits increased activity in tumor 

cells leading to a faster PpIX production. With quicker PpIX production in tumor cells 

and the subsequent inability to efficiently convert PpIX to heme, exogenous ALA 

administration provides superior tumor selectivity to its HpD and Photofrin counterparts 

(Lilge and Wilson 1998). Maximal PpIX production occurs roughly four hours after 

administration in most cells (Olivo ct al 1998. Xiao ct al 1998) and it is therefore most 

desirable to treat at this time. Other major advantages o f ALA are a dramatically shorter 

cutaneous photosensitization period o f 24-48 hours (permitting repeat or tractionated 

treatments) and easy administration (oral or topical).

It should be noted that ALA is a hydrophilic compound. While ALA demonstrates 

tumor selectivity with regards to intra-cellular processes, its hydrophilic chemical nature 

limits transport across intact (lipophilic) cellular membranes. The modification o f ALA 

to a lipophilic chemical state is possible by estérification (Kloek and van Henegouwen
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1996, Kloek et al 1998). ALA ester lipophilicity is reflected by the octanol water 

partition coefficient as outlined in Table 1. ALA and the methylester are soluble in water 

but less so in octanol. Conversely, the hexylester (h-ALA) and benzylester are more 

soluble in octanol and less soluble in water. The finding that comparable amounts o f 

PpLX are produced following the administration o f ALA and lower concentrations o f 

ALA  ester, reflects the superior ability o f esters to penetrate cell membranes (Uehlinger 

ct al 2000). Increased ALA ester-induced PDT efficacy has also been reported in 

experiments involving human glioma spheroids (Hirschberg ct al 2002). PpIX 

production is not only dependent on the photosensitizer concentration, but on the ability 

o f cells to cleave the ester component (enzymatic action o f esterases) and release .AL.A 

into the heme pathway (Kloek ct al 1998).

Table 1 Octanol Water Partition Coefficients o f ALA and Esters
Photosensitizing Compound Molar Weight 

(g mol ’ )
log P-* 

Octanol Water
5-Aminolevulinate HCl (ALA) 167 L4
Methyl 5-.Aminolevulinate HCl 181 -0 8
Hexyl 5-Aminolevulinate HCl 252
Benzyl 5-.Aminolevulinate HCl 257 -2.4

log P is the logarithm o f a compound’s partition coefficient between octanol and water. 
It is a physicochemical parameter that correlates with absorption o f small molecules 
into physiological membranes.
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Figure I . Chemical Structure o f 5-ALA
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Figure 2. Chemical Structure o f h-ALA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Glycine
L +

Succinvi CoA
-►5-ALA^

5-ALA Synthase _ . .  y  1

FEEDBACK
CONTROL

CO’ - CoASH'

HEME

Ferrocheletase I

I  -
Protoporphyrin IX

Protoporphyrinogen 
( )x\dase

/ ^ 3 H :

-►5-ALA
5-ALA Dehvdrase

,H ’0

Porphobilinogen

Porphobilinogen 
Deaminase * 

L roporphyrinogen I I I  
Cosvnthetase

4NH3
H’ O

Uroporphyrinogen III

L roporphyrinogen 
Decarhox\ lose

Protoporphyrinogen IX

L 'oproporphyrinogen

4H*

7 ^
2C0: 2H* /

Ox\dase

4C 0:

-Coproporphyrinogen

Figure 3. Heme Biosynthesis Pathway

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1.1.4 Pharmacokinetics o f ALA and its esters

One o f the major concerns with using ALA (and esters) as a photosensitizer relates to 

organ toxicity (specifically the liver). Porphyrin levels in the plasma o f dogs were 

measured following the intravenous injection o f 100 mg kg ' ALA (Egger ct al 1996). 

Levels increased 50-fold (to 60 pg ml ') during the first hour after injection and declined 

to 30 pg ml ' over the next 7 hours. Porphyrin production, as measured by fluorescence, 

increased only gradually in tissues with the highest levels in the liver after 8-10 hours, 

followed by the prostate, muscle, bladder, and skin. Several other studies ha\e been 

performed examining the tissue distribution o f ALA-derived PpLX follow ing systemic 

administration (Peng et al 1992. Bedwell et al 1992. Fukuda et al 1993. Hua et al 1995. 

Henderson et al 1995). Although both oral and intravenous administration o f A LA  result 

in similar biodistribution kinetics, higher oral AL.A doses are required to produce the 

same amount o f PpIX as produced following intravenous administration because of 

presystemic drug elimination (first-pass metabolism) occurring in the intestinal lumen, 

gastrointestinal wall, and liver (Loh et al 1993).

Several patient studies have been conducted examining toxicity effects after .AL.A 

administration. Reports o f patient nausea and vomiting have been made following the 

oral administration o f varying ALA doses (Loh et al 1993. Webber et al 1997. Tope et al 

1998. Gossner et al 1999. Ackroyd et al 1999. Hinnen et al 2000). In addition, transient 

liver abnormalities (elevated bilirubin, transaminases, and alkaline phosphatases) have 

been observed (Loh et al 1993. Webber et al 1997. Tope et al 1998. .Ackroyd et al 1999, 

Gossner et al 1999). In general, cutaneous phototoxicity or abnormal neurological 

function was not reported. PpIX concentrations in the plasma varied widely among
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10

patients (in the above studies) but appeared to be a function o f dose (higher 

concentrations occurring earlier following higher doses).

Recent in vivo studies o f photosensitizer uptake in different brain tumor models have 

supported the use o f ALA in PDT (Hebeda et a l 1998, Lilge and Wilson 1998. Olivo et al 

1998. Stummer et al 1998c). Lilge and Wilson (1998) reported a significantly reduced 

uptake o f .AL.A in white matter as compared to grey matter using the VX2 tumor (derived 

from a rabbit Orycyioiagus cimiculus tumor o f unspecified tissue origin) in rabbits. The 

lack o f PpLX production in the white matter is likely attributed to the absence o f heme 

synthesis in this tissue (Verma et a l 1993). Despite a lower concentration o f PpLX in 

both white and grey matter after 24 hours as compared to 6 hours, the tumor-to-grey 

matter uptake ratio was nearly identical at both times suggesting similar synthesis and 

clearance kinetics. Furthermore, a 100:1 tumor-to-white matter PpIX uptake ratio was 

reported following 100 mg kg ' A LA  administration. Since the tumor-to-white matter 

threshold dose value ratio was less than 0.02. the light fluence would need to be about 

5000 times higher in white matter than in the tumor to cause equivalent damage. Olivo et 

al ( 1998) also found a greater PpIX production in grey matter than white matter using the 

VX2 tumor in rabbits. These findings strongly support the use o f .ALA in brain tumor 

treatment since the majority o f adult tumors develop in the white matter. The superior 

selectivity would result in little or no photodamage to white matter, thereby preventing 

potentially debilitating neurological detriment. Tumor-to-normal tissue PpIX 

fluorescence in the C6 glioma tumor has been reported to be at least 6:1 six hours after 

ALA administration (Stummer et a l 1998c).
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ALA  is a small, water-soluble molecule. Its ability to pass the blood-brain bamer 

(BBB) is currently the subject o f dispute. By injecting '"‘C-labelled ALA. Terr and 

Weiner concluded that the BBB is virtually impermeable to AL.A following systemic 

(intravenous) administration (Terr and Weiner 1983). Shortly after ALA injection 'Re­

labelled ALA  was found only in areas o f the brain that lacked BBB function and 

cerebrospinal fluid (CSF). Conversely. McGillion reported a blood level dependence o f 

AL.A concentrations in rat brain homogenates (McGillion et al 1974. McGillion et al 

1975). However. ALA extraction after brain tissue homogenization does not allow the 

distinction o f areas with intact BBB from areas with disrupted BBB (Hebeda et al 1998). 

Using autoradiographic techniques, quantitative studies have shown BBB permeability 

within tumor tissue and partial BBB permeability in brain adjacent to tumor (BAT) 

(Hasegawa et al 1983, Yamada et al 1982). Therefore, the ability o f ALA to cross the 

intact BBB might not be o f as much importance as imagined. Since PDT would be 

performed after surgical tumor removal, the BBB would be disrupted and .AL.A would 

freely permeate remaining tumor tissue in the resection margin. How ever, as previously 

mentioned, only partial BBB permeability exists in BAT. Tumor cells nested beyond the 

resection margin could be more resistant to AL.A-mediated PDT because o f the partial 

BBB permeability surrounding these cells. Furthermore. BBB regeneration following 

surgery could preclude the use o f ALA in repeat PDT treatments i f  ALA cannot pass 

intact BBB. The development o f lipophilic photosensitizers (ALA  esters) might 

overcome this issue altogether i f  esters can penetrate the intact BBB (as would be 

expected from lipophilic compounds). However, a drawback associated with systemic h-
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ALA administration pertains to liver toxicity. The toxicity o f h-ALA is higher than ALA 

at comparable doses.

1.1.5 Lieht Delivery

Following the accumulation o f PpLX in tumor tissue, the aim o f PDT is to effectively 

destroy malignant cells by light irradiation. The penetration o f light into tissue 

determines the extent o f damage and is influenced by the wavelength o f light and tissue 

type (Popovic ct a l 1995). Light transmission in brain parenchyma increases from 350 

nm to 750 nm after which a plateau is observed (Popovic ei al 1995). Due to the fact that 

porphyrins and PpLX exhibit light excitation energies o f 630 nm. red light is most 

commonly used. However, the penetration depth o f this wavelength light is only 1.5 mm 

in normal brain tissue and 2.9 mm in tumor tissue (Muller and Wilson 1985).

The benefits o f fractionated dose delivery in PDT have been well documented. The 

general premise o f fractionated treatment involves the re-oxygenation o f target tissues. 

During a single, continual dose delivery, oxygen is depleted rapidly from the target 

tissue. However, fractionating the dose allows tissues to replenish oxygen levels, thereby 

enhancing the subsequent treatment. PDT experiments involving human glioma 

spheroids indicate that low fluence rates (longer treatment time) produce a greater cell 

k ill than high fluence rates (Madsen ei a l 2001). Furthermore, the results o f clinical trials 

suggest that improved patient prognosis is directly correlated with higher fluences 

(Muller and Wilson 1996).
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1.2 Intent o f Current Work 

Primary malignant brain tumors account for 2-3% o f the entire cancer burden and are 

the third leading cause o f cancer deaths in the 15-35 year old age group (Black 1991). 

The most aggressive brain tumors are o f the glial variety, specifically glioblastoma 

multiforme (GBM). GBM tumors exhibit a rapidly invasive, yet diffuse growth pattern 

that precludes effective treatment. Current treatment methods involve surgery, 

chemotherapy, and radiation therapy. Chemotherapy and radiation therapy focus on post- 

surgical treatment o f tumor cells remaining in the resection margin. The benefits o f 

radiation therapy treatment methods have been reported (Anderson 1978, Kristiansen et 

al 1981. Walker et al 1978, Walker et al 1980) but survival rates rarely improve 

significantly. Typical treatments involve fractionated dose delivery with doses o f 1.8 -

2.0 Gy per fraction delivered to a total o f 52 - 64 Gy. While increasing the dose may 

improve patient prognosis, it is unadvisable to do so because o f the resulting detriment 

from normal tissue necrosis and leucoencephalopathy (Emami et al 1992, Fine 1994).

Chemotherapy has been explored as a brain tumor treatment method. Issues 

pertaining to delivery and tumor cell resistance have hampered the efficacy o f 

chemotherapy. Systemic administration results in the death o f cancer cells as well as 

healthy, normal cells. Attempts have been made to deliver the drugs intra-arterially to 

localize the treatment but the complexity o f this procedure makes it undesirable. 

Furthermore, this technique can also result in unpredictable spatial distributions and 

significant concentration variations at the treatment site (Groothuis 2000).

Due to the many inadequacies o f current GBM treatment methods, recent work has 

focused on developing a more aggressive focal treatment. Several aspects o f  PDT make
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it a desirable treatment method (namely tumor selectivity, the possibility for repeat 

treatments, and the absence o f treatment resistance). Current research is aimed at the 

development of: improved photosensitizers (such as ALA esters), light deliverv' devices, 

and more accurate PDT dosimetry techniques.

The use o f ALA in neurosurgery has been limited to the field o f photodynamic 

detection (PDD). Successful studies o f ALA-mediated PDD have been reported 

(Stummer ct al 1998a, Stummer et al 1998b, Stummer et a l 2000, Stummer and 

Baumgartner 2000). Following tumor debulking, the resection cavities were irradiated 

with light resulting in visible PpLX fluorescence. The fluorescence further assisted 

micro-surgical tumor removal. Results were promising, prolonging patient survival for 

up to si.x months. The overall impact o f PDD on patient survival, however, is limited by 

the difficulties associated with removal o f infiltrative tumor. Although PDD allows 

accurate tumor visualization, it is often difficult to remove the infiltrative tumor tissue 

w ithout compromising healthy neural tissue. It is often necessary to leave a margin o f 

Tinfiltrate to prevent adverse neurological deficit. The ultimate goal o f PDT is to 

eliminate the infiltrate.

Few clinical PDT trials have been performed and those that have been conducted 

pnmarily involved HpD or Photofrin. Initial results were promising, however, treatment 

failure occurred in nearly all cases. The lack o f success was likely due to the intra­

operative singe dose treatment rather than successive, fractionated treatments.

The specific aim o f this project is to examine the distribution o f ALA and h-ALA- 

induced PpIX in a unique animal model in which tumors accurately represent GBM in 

patients. A ll previous in vivo GBM studies have been performed on animals possessing
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cell line-derived tumors. Some o f the most commonly used cell line-derived tumors are 

derived from the L-87MG (malignant glioma) line. Although glioma in origin, these cell 

line-derived tumors grow as solid masses in vivo rather than diffusely and invasively. 

The development o f an accurate tumor model has permitted the in vivo study o f A L A  and 

h-ALA localization and PpLX quantification in authentic glioma tissue.

1.3 Significance of the Study 

Current in vivo brain tumor research models are somewhat limited and restricted 

when examining photosensitizer pharmacokinetics because o f the type o f tumors 

employed. Cell line-derived tumors lack the diffuse and infiltrative growth pattern 

associated with GBM in patients and, therefore, may not accurately represent 

photosensitizer uptake and distribution. .Although ALA-induced PpIX uptake and 

distrubtion has been explored in vivo, this study is unique in that fluorescence microscopy 

has never before been used to quantify tumor uptake o f ALA and h-AL.A photosensitizers 

in a biopsy tumor model. Foundational toxicity data w ill be obtained that can be used as 

standards for future in vivo studies. The examination o f in vivo .AL.A and h-.AL.A 

distribution w ill provide valuable information regarding the potential o f these 

photosensitizers in the clinical treatment o f malignant gliomas.

1.4 Definition o f Terms 

Fluorescence is the direct result o f the light activation o f protoporphyrin IX (PpIX), 

not the exogenously administered prodrug (ALA). However, when discussing tumor 

selectivity, it is implied that the location o f PpIX fluorescence reflects the location o f
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exogenously administered compound. Regarding selectivity, the terms PpLX and either 

.ALA or h-AL.A mav be used interchaneeablv.
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CHAPTER 2

METHODOLOGY

2.1 Photosensitizing Compounds 

5-.Aminolevulinic acid hydrochloride and the h-ALA were provided by PhotoCure (Oslo, 

Nonvay) in lyophilized form. Both compounds were dissolved in sterile saline (0.9°o 

NaCl) by thorough mixing. Although it is often recommended that esters be initially 

dissolved in DMSO to facilitate adequate solubility (due to their hydrophobic chemical 

nature), this step was found to be unnecessary for homogenous solution production 

(possibly due to high compound purity). The lipophilicity o f ALA and h-ALA is 

reflected by the octanol water partition coefficients (P) as shown in Table 1. The h-ALA 

compound is roughly three orders o f magnitude more lipophilic than ALA.

The effects o f ALA acidity were examined by injecting A LA  w ith unadjusted pH (pH 

-  2.5). and adjusted pH o f 5 and 7 into the rat brain. Results suggested that unadjusted 

.ALA was unfavorable for local administration (see Chapter 3). Due to the acidity o f 

AL.A and the sensitivity o f neural tissue, it was determined that the pH o f ALA  should be 

altered prior to local injection. Therefore, following compound preparation; the pH o f 

AL.A was adjusted using lOM and IM  NaOH in a drop-wise manner until a pH o f 7 was 

obtained. Several studies have demonstrated the relative instability o f ALA at neutral 

pHs (Bunke et al 2000. Novo et a l 1996). A LA  is a member o f a-

17
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amino ketones that dimerize readily in alkaline (basic) conditions (Krems and Spoem 

1947), The color change o f ALA aqueous solutions (clear at low pH and transparent 

yellow at higher pH) (Chang et a l 1996) was also observed in this experiment following 

compound neutralization. Due to this increased instability o f .ALA the compound was 

prepared immediately prior to use (1-2 hours). As a further precaution, the adjusted ALA 

was stored on ice as increased temperature may contribute to compound instability 

(Chang et al 1996). ALA stability was gauged qualitatively by visually noting any color 

change following solution preparation. The pH o f h-ALA is approximately 5.5 and was 

therefore not altered pnor to injection.

2.2 Cell Cultures

Human GBM biopsies were received and processed as quickly as possible following 

tumor removal to ensure tissue viability. Processing involved thorough mincing o f tissue 

with a scalpel. Minced tissue was washed with Dulbecco’s Modified Eagles Medium 

(DMEM) supplemented with 10°o fetal ca lf serum, glutamax. and four times the 

prescribed concentration o f non-essential amino acids ( 16 mL total in 500 mL o f medium 

volume), then passed through 400 pm stenle mesh filters. L'nfiltered tissue was further 

minced and washed. The washing and filtering process was repeated until all tissue 

passed through the filter. The filtrate was mixed thoroughly in 50 mL DMEM and 5 mL 

aliquots were dispensed into 80 cm' agar-coated culture flasks. The agar-overlay volume 

was composed o f 15 mL DMEM supplemented with 10% heat-inactivated fetal calf 

serum, four times the prescribed concentration o f nonessential amino acids (16 mL total), 

2% L-glutamine. penicillin (100 lU mL '). and streptomycin (100 pg mL"'). An
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additional 10 mL o f DMEM was added to each flask. Flasks were stored in a standard 

tissue culture incubator (37°C. 95% air. 5“o CO;, and 100% relative humidity) and 

medium was changed every 3 to 4 days. Spheroid development typically spaimed 10 to 

14 days after w hich time spheroids were prepared for injection. Optimal tumor induction 

is obtained by injecting ideally sized spheroids (250-350 pm) into the rat brain. 

Spheroids smaller than 250 pm contain too few cells and thus limit tumor-inducing 

capability,. Diameters larger than 350 pm. however, also adversely affect tumor induction 

because o f a necrotic spheroid center. As spheroids develop, the inner cells are gradually 

depnved o f oxygen due to limited oxygen diffusion into the central region o f the 

spheroid. Consequently, the tumor-inducing capability o f large spheroids is less than 

optimal. Spheroids were sized by performing a series o f filtrations with 250 pm and 350 

pm mesh filters. The spheroids were first passed through a 350 pm filter. The un-filtered 

material was discarded (ie. spheroids larger than 350 pm). The filtrate was passed over a 

250 pm mesh filter and spheroids contained on the filter (ie. sized greater than 250 pm 

but less than 350 pm) were retained. Sized spheroids were then transferred from the filter 

paper surface to a petn dish w ith agar medium. To ensure spheroid viability the animal 

injections were performed w ithin two hours o f spheroid sizing.

For comparative purposes, animals were also injected with cells from the U-87MG 

cell-line (originally derived from a malignant glioblastoma astrocytoma in a female 

patient by explant technique). Cells were cultured in DMEM. flasks were stored in a 

standard tissue culture incubator (37°C. 95% air, 5% CO;, and 100% relative humidity), 

and medium was changed every 3 to 4 days. Cells were grown to 75% confluence after 

w hich time DMEM medium was removed and cells were detached from the flasks by a 3-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

20

minute incubation with 0.01 M tiypsin EDTA (ethylenediamine tetraacetic acid). The 

chelating activity o f EOTA was inactivated by the addition o f DMEM. Cells were 

suspended in medium and centrifuged for 5 minutes at 836 times gravity (Heraeus 

Sepatech Megafuge 1.0, rotor #2705, 1000 rpm). The supernatant was removed and the 

pellet was re-suspended with 500 pL o f medium. A 50 pL aliquot was removed for cell 

counting.

While a direct comparison between biopsy tumors and cell-line tumors would be best 

performed by injecting spheroids in both experiment types, it was determined that IxlO '’ 

U87-MG cells would be injected for cell-line tumor induction, to enhance experiment 

expediency. .As mentioned, spheroid development spans 3 to 4 weeks whereas cell 

culture maturation can occur in less than a week. Furthermore, no histopathological 

differences have been observed between tumors established from single-cell suspensions 

and spheroids (Engebraaten el al 1999).

2.3 Animal Expenments 

Nude rats (Han; rnwrmt Rowett) were used in these experiments. To allow tumor 

development, immuno-deficient rats were required. A fully functional immune system 

typically precludes cross-species transplantation due to the immune system’s capability to 

effectively destroy histo-incompatible tissue (xenotransplantation). Animals were kept in 

a specific pathogen-free environment (25°C), in positive-pressure rooms with filtered and 

humidified air (55% relative humidity) on a standard 12-hour day/night cycle. Animals 

aged 4 to 5 weeks, weighing 60 to 80 g, were used in these experiments. .Anesthetization 

was performed by subcutaneous injection o f 0.1 mg kg ' fentanyl, 5 mg kg ' fluanison.
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and 2.5 mg kg ' midazolam. Control animals were injected with Phosphate Buffered 

Saline (PBS).

2.3.1 Photosensitizer Toxicity 

Following anesthetization, the rat’s head was immobilized in a stereotactic frame. .A 

rod was inserted into each o f the outer ears and a nose clamp was applied to prevent skull 

movement. The automated injection apparatus was coupled to the stereotactic frame to 

maintain precision during injections. Once immobilized, a 5-7 mm longitudinal incision 

was made in the scalp. Using a dental drill (2 mm drill bit diameter), a burr hole was 

created 1 mm laterally (right) to the midline fissure and 1 mm posterior to the frontal 

fissure in the animal’s skull. The canula was lowered to a depth o f 2.5 mm below the 

surface o f the brain and the 30 pL photosensitizer-containing volume was injected over a 

3-minute time period.

Photosensitizer concentration ranges o f 10-398 mM ALA and 6.6-265 mM h-ALA 

were used to determine the maximum tolerable dose for topical drug administration in the 

Rowett nude rat. Respiratory distress leading to death is the main observable side-effect 

following high dose administration o f these drugs. As such, labored breathing was noted 

during and after photosensitizer injection. A total o f 40 rats were injected -  6 

systemically (intraperitoneal) and 34 locally (Table 2).

2.3.2 Tumor Induction 

Animal preparation and immobilization was performed as described in Section 2.3.1. 

Following the creation o f a burr hole, the canula was lowered to a depth o f 2.5 mm below 

the dura and the 30 pL spheroid-containing or cell-containing volume was injected over a 

3-minute time period. A  total o f 10 spheroids in the 30 pL volume were injected. For
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cell-line experiments, one million cells were injected (equivalent to the tumor-inducing 

ability o f 10 spheroids). The canula was slowly withdrawn to prevent spheroid or cell 

backflow and the incision was closed. Rats were monitored daily for neurological 

detriment exhibited through abnormal gait and, or behavior. .Abnormal behaviors were 

considered to be attributed to the tumor and. therefore, were equated with mature 

development. Spheroid-induced tumors required at least 3 months for complete 

development (resulting in neurological impairment) whereas cell-line tumors developed 

fullv in 2 or 3 weeks.

Table 2 Toxicity Experiments

Compound
.Administration
Method

Concentration or
Volume Number o f .Animals

ALA Systemic (IP) 119 mM 2
Local (intracranial) 398 mM ■)

199 mM 8
99 mM
20 mM 2
10 mM 2

H-ALA Systemic (IP) 79 mM ■)
Local (intracranial) 265 mM ■)

132 mM 8
66 mM ■)

13 mM
6.6 mM 2

PBS Systemic (IP) 100 pL 2
Local (intracranial) 30 pL 2

Total Animals 40

2.3.3 Photosensitizer Uptake 

After a sufficient tumor growth period, photosensitizer injections were performed to 

quantify the PpIX production in tumor cells. Again, animal preparation, immobilization, 

and compound injection were performed as described in Section 2.3.1. Based on toxicity
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studies (Section 2.3.1) the A LA  and h-ALA concentration for intra-tumoral injection was 

determined to be 99 mmol L ’ ALA and 66 mmol L ' h-ALA. .A total o f 47 rats 

(excluding h-ALA titration experiment) were injected intra-cranially with this dose o f 

ALA and h-ALA. Table 3 summarizes the photosensitizer uptake expenments.

Table 3 Photosensitizer Uptake Experiments

Tumor Type Compound
Administration
Method

Concentration 
or Volume No. o f .Animals

Biopsy ALA Local 99 mM 7
Systemic 125 mg kg ' 9

H-ALA Local 66 mM 7
Svstemic 50 mg kg ' 11

PBS Local 30 pL 4
Svstemic 100 pL

U-87MG ALA Local 99 mM 7
H-ALA Local 66 mM 6
PBS Local 30 pL

Total Animals 55

In two separate experiments, a total o f 20 rats were injected systemically (intra- 

pentoneally) with AL.A and h-ALA. In the first experiment, 9 rats were injected with 

125 mg ALA per kg body weight and 1 rat was injected with PBS. In the second 

experiment, 9 rats were injected with 50 mg h-ALA per mg body weight and 1 rat 

injected with PBS. In each experiment, the 9 rats that received photosensitizer were 

divided into three time groups. The first group was sacrificed after 1 hour o f 

photosensitizer incubation, the second group was sacrificed after 4 hours, and the third 

group was sacrificed after 6 hours. In a separate, related experiment, 2 rats were injected 

with 50 mg h-ALA per mg bodyweight each and sacrificed after 4 hours (these rats 

displayed signs o f neurological impairment and were therefore required to be sacrificed).
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Two h-ALA titration experiments were conducted to determine the effect o f varying 

photosensitizer concentration on the PpLX production in tumor cells following topical 

administration (outlined in Table 4). The first expenment consisted o f 6 rats ( three 

groups). Two rats in the first group received 13 mM, both rats in the second group 

received 33 mM, and both rats in the third group received 66 mM. The second 

experiment involved 14 rats (separated into 5 groups). Three rats in the first group were 

given 13 mM, three rats in the second group received 33 mM, and 66 m.M h-.ALA was 

administered to the third group. The fourth group was given 99 mM AL.A for 

comparative purposes. The fifth group consisted o f PBS controls (30 uL injection).

Four hours after injection the animals were sacrificed and the intact, whole brains 

were removed in dark conditions (red light) to prevent photobleaching o f neural tissue. 

The tissue was cooled in TissueTek" (Bayer Corporation, Pittsburg, P.A, L S .A.: Cat. No. 

4583) on dry ice before “ halving" the brain. A section was made in the coronal plane 

along the canula tract to separate one section for further sectioning and one section for 

macroscopic pathology examination (storage in 4% formalin). The frontal section was 

frozen completely in TissueTek and stored at -70"C until microtome sectioning. 

Sectioning was performed in dark conditions to prevent photobleaching. The tissue 

samples were sectioned in 10 pm thick slices to allow a greater amount o f  PpIX 

fluorescence during microscopy. Typical tissue sample thickness for conventional 

microscopy ranges from 5-8 pm.
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Table 4 Titration Experiment in Biopsy Tumors

Compound
.Administration
Method

Concentration or 
Volume Number o f Animals

H-ALA Local 13 mM 5
33 mM 5
66 mM 5

ALA Local 99 mM 3
PBS Local 30 pL 2

Total Animals 20

2.4 Microscopy &  Quantification 

Fluorescence microscopy was performed with a biological research microscope 

(Nikon model E800) with a 100-watt mercury vapor lamp. A highly photosensitive, 

thermo-electrically cooled charge-coupled device (CCD) camera was used to perform 

fluorescence imagery under the control o f AquaCosmos software (1.20 version). The 

resolution o f the images was 1280x1024 pixels with a dynamic range o f 16 bits per pixel 

(ORCAII, Hamamatsu Photonics K.K., Japan). The filter combination used included a 

380-420 nm excitation filter, a 430 nm beam splitter, and a 630±20 nm band-pass 

emission filter. For comparative purposes, digital images o f corresponding Hematoxylin 

and Eosin (HE) stained samples were obtained (additional coronal section) to 

anatomically verify the presence o f tumor tissue. Adequate fluorescence image 

development w as found to result following a sample irradiation time o f 15 seconds. The 

images w ere acquired under 4X magnification (the largest field o f view).

Quantification was performed by manually selecting regions o f interest (ROIs) in 

tumor tissue and normal tissue. Program analysis provided the maximum, minimum, and 

average pixel intensity within the ROI.
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CHAPTER 3 

RESULTS &  DISCUSSION

3.1 Toxicity Study

Results o f the toxicity experiments involving non-tumor bearing rats are summarized in 

Table 5. As illustrated, survival appears to be dependent on the type o f anesthetizing 

agent used. For example, 8 o f the 10 animals subjected to Halothane died. The findings 

that all 4 rats in the 199 mM ALA group died following Halothane anesthetization 

compared to 1 o f 4 deaths after Enfluran anesthetization, and 3 o f 4 deaths in the 132 mM 

h-.ALA group after Halothane compared to no deaths in the Enfluran group, strongly 

suggests anesthesia-induced death by malignant hyperthermia.

Based on the toxicity data it was determined that the maximum tolerable ALA and h- 

ALA doses for local, intra-cranial injection are 99 mM and 66 mM, respectively. 

.Although only one animal died in the 199 mM ALA group, and no deaths occurred in the 

132 mM h-.ALA group (following Enfluran anesthetization), some animals experienced 

breathing difficulties. As a result, 99 mM ALA and 66 mM h-ALA doses were deemed 

safe. The single death in the 99 mM ALA group was attributable to the animal’s low 

bodv weight.

26
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Compound'
Administration
Method Anesthesia Description o f Result

ALA (119m M ) Systemic Enfluran 2 o f 2 rats lived
.ALA (398 m.M) Local Enfluran 2 o f 2 rats died during injection
.ALA (199 mM) Local Enfluran 1 o f 4 rats died after injection 

(respiratory distress)
A LA  (199 mM) Local Halothane All 4 rats died
ALA  (99 m.M) Local Enfluran 1 o f 2 rats died after injection 

(low body weight)
.ALA (20 m.M) Local Enfluran 2 o f 2 rats lived; 1 rat experienced 

respiratory distress
A L A (lO m M ) Local Enfluran 2 o f 2 rats lived

h-.ALA (79 mM) Systemic Enfluran 2 o f 2 rats lived
h-.AL.A (265 mM) Local Enfluran 2 o f 2 rats died during injection
h-.ALA (132 mM) Local Enfluran 4 o f 4 rats lived; 1 rat experienced 

respiratory distress
h-.AL.A (132 mM) Local Halothane 1 o f 4 rats lived
h-.AL.A (66 mM) Local Enfluran 2 o f 2 rats lived
h-.ALA (13 mM) Local Enfluran 2 o f 2 rats lived
h-.ALA (6.6 m.M) Local Enfluran 2 of 2 rats lived

PBS (100 pL) Systemic Enfluran 2 of 2 rats lived
PBS(30pL) Local Halothane 1 o f 2 rats lived

ALA compound pH adjusted to neutral (pH 7) prior to local injection. The h-ALA 
compound was unadjusted (pH 5.5) for local and systemic injections.

In a small experiment involving 12 rats, the effects o f varying .ALA pH was studied. 

The unadjusted pH o f ALA  in solution is roughly 2.5. Injecting an acidic compound 

directly into neural tissue could have devastating effects. Four rats were injected with 

unadjusted ALA (99 mM) and eight rats were injected with pH-adjusted ALA  (99 mM); 

four injected with pH 5 and four injected with pH 7 (neutral). The results are 

summarized in Table 6.
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Table 6 Effect o f Varying ALA pH
AL.A pH Number o f Rats Description
2.5 (unadjusted) 4 3 rats died shortly after injection
5 4 3 rats died shortly after injection
7 (neutral) 4 1 rat died shortly after injection

Based on the low surx ival rates at low pH (pH 2) and only one death at neutral pH. it 

was determined that the pH o f ALA would be adjusted to neutral (pH 7) prior to local, 

intra-cranial injection. The reason for one death in the neutral pH group is unknown, 

however, it could be related to the depth o f canula placement rather than compound pH. 

I f  the photosensitizer was injected too deeply (ie. into the brain stem) it may adversely 

affect respiration or cardiac function.

3.2 Cell-Line Tumors

3.2.1 Qualitative Image Analysis 

Images o f cell-line tumors following local injection o f .ALA generally showed a 

greater penpheral uptake o f photosensitizer than in central tumor regions ( illustrated in 

Figure 4). Associated with cell-line tumors is an encapsulating membrane produced as a 

physiological defense response to a foreign solid mass (tumor). The outward diffusion o f 

ALA from the tumor center to the periphery is likely attributed to the compound’s 

hydrophilicity. ALA accumulates and is retained at the tumor’s edge because o f its 

inability to cross the lipophilic encapsulation. This observed effect has relatively little 

clinical relevance because the aggressive tumors with which this project is concerned 

(GBM). do not exhibit the growth pattern o f cell-line tumors. The use o f such simple cell 

line models in the evaluation o f experimental therapies such as PDT would likely result

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

29

in unrealistically high survival rates and would thus not be an accurate predictor o f the 

outcome o f clinical trials.

The administration o f h-ALA in animals with cell-line tumors resulted in slightly 

different results than that observed following ALA administration. Figure 5 shows the 

relatively scattered PpIX production following the injection o f h-ALA. Despite the 

diffuse fluorescence pattern. PpIX production appears to be localized entirely in the 

tumor. Figure 6 shows the relatively weak fluorescence signal obtained after only one 

hour o f h-ALA incubation.

3.2.2 Quantitative Image .Analysis 

Rectangular ROIs were created in the central tumor area, the tumor penphery. and in 

normal tissue. Fluorescence quantification was performed in a total o f 6 samples: 4 in 

the ALA group and 2 in the h-ALA group. O f the 4 AL.A samples. 3 were derived from 

the same animal (le. different slices from the same tumor as denoted by “ a", “ b” . or “ c"). 

As shown in Figure 7. PpIX production is relatively constant in tumor tissue, wheras 

larger variations are observed in normal tissue. The average tumor-lo-normal tissue 

uptake ratio, as determined from the data in Figure 7. was found to be 4.4=2.5:1.

PpIX production following h-ALA injection was examined in only two cell-line 

samples (Samples 3 and 4. Figure 8). Normal tissue fluorescence was at background 

levels (auto-fluorescence) in Sample 3 but substantially higher in Sample 4. This is due 

to the fact that the PpLX accumulation time was limited to one hour in Sample 3 as 

opposed to six hours in Sample 4. Based on the data presented in Figure 8. tumor-to- 

normal tissue ratios following I and 6 hour h-ALA administration were 20± 184:1 and 

1.4=0.5:1. respectively.
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Figure 4. A. C: Four-hour ALA-induced PpIX fluorescence o f U-87MG cell-line
tumors (t) in the normal (n) rat brain. Note the sharply defined border (b) 
and PpIX accumulation. B. D: HE sections corresponding to (A) and (C). 
clearly reflecting tumor (t) area and tumor border (b) as well as the normal 
(n) tissue.
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Figure 5. A: Six-hour h-ALA-induced PpIX fluorescence o f a U-87MG cell-line tumor 
(t) in normal (n) rat brain. Note the patchy PpIX distribution in tumor. B: 
Corresponding HE section showing tumor (t) and normal (n) brain tissue.
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Figure 6. A: One-hour h-ALA-induced PpIX fluorescence o f  a U-87MG cell-line tumor 
(t) in normal (n) rat brain. Note the less relative PpIX fluorescence between 
tumor (t) and normal (n) tissue. Again, tumor border is well defined. B: 
Corresponding HE section showing tumor (t) and normal (n) brain tissue.
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Tumor border fluorescence was measured in three different locations in each o f the 4 

samples (la, lb. Ic. and 2). The mean tumor border and normal tissue fluorescence are 

summarized in Figure 9. From the data in Figure 9. the average border-to-normal tissue 

fluorescence is 6.4= 1.3:1. Since central tumor-to-noimal tissue fluorescence is 4.4=2.5:1. 

nearly twice as much PpLX accumulates at the edge as in the center o f cell-line tumors. 

Border fluorescence in the h-ALA samples was not measured due to a lack o f visible 

accumulation at the tumor periphery.

The tumor-to-normal tissue PpIX fluorescence ratios for U-87MG cell-line tumors are 

summarized in Figure 10. The ALA, value o f 4.4±2.5:1 is in quantitative agreement with 

Peng et al (unpublished)^ who observed a tumor-to-normal tissue uptake ratio o f 2:1 in 

basal cell carcinomas (BCCs), Xiao et al (1998) who reported uptake ratios ranging from 

3:1 to 5:1 in a bladder tumor model, and Stummer et al (1998c) who reported 6:1 uptake 

in the C6 glioma tumor. Slight variations in uptake ratios from those observed by Peng et 

al may be due to the different tumor types studied. With regards to the h-ALA. only 

slight differences in PpLX fluorescence were observed in normal and tumor tissues 

(Figure 8).

It is interesting to note that there was essentially no PpIX fluorescence in normal 

tissues one hour following photosensitizer administration, however, weak tumor 

fluorescence was observed. This would seem to suggest that it might be clinically 

advantageous to consider PDT treatments with h-ALA shortly after administration (ie. 1 

hour). It should be noted however, that due to the small sample size studied, it is difficult 

to reach definitive conclusions in this case. Further investigation is certainly warranted.

’ Personal Correspondence
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Figure 7. Relative AFA induced lluorescence in L '-S 'M G  cell-line. Samples 1 and 2 
were obtained four-hours after .AL.A administration.
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Figure 8. Relativ e h-.AL.A-induced fluorescence in U-87MG cell-line tumors. Sample 3 
was obtained one hour after h-.ALA administration. Sample 4 was obtained 
six hours after h-ALA adminstration
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Figure 9. AFA-iiu iuced tum or border lluorescence in L’ -S l'M G  cell line tumors 
(corresponding to the samples in Figure 7).
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Figure 10. Tumor-to-normal tissue uptake ratios in U-S7MG cell line tumors. Included 
are the average .ALA-induced tumor uptake ratio, the average ALA-induced 
border uptake ratio, and the h-.AL.A-induced uptake ratios in 1- and 6-hour 
samples.
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3.3 Biopsy Tumors

3.3.1 Qualitative Image Analysis 

The invasive nature o f GBM in the biopsy tumor model is clearly evident in both 

fluorescence images and HE sections. Fluorescence patterns show concentrated PpIX 

production in the central tumor and a gradual tapering o f fluorescence with an increasing 

distance from the tumor's core. There is a good correspondence between the 

fluorescence images and the HE sections, the latter illustrating densely nucleated tumor 

cells gradually diminishing with distance from the center. Figures 11 through 13 

illustrate this fluorescence pattern (resulting from ALA administration) and 

corresponding tumor physiology. These images clearly indicate the physical distinction 

between cell-line tumors and biopsy tumors and the superior mimicry o f biopsy tumor to 

GBM in patients (see Section 3.3.1). Furthermore, photosensitizer distribution is 

markedly different in the two tumor types. PDT treatment efficacy in currently used 

tumor models (cell-line) may not accurately predict patient response to PDT in brain 

tumor treatments.

Biopsy-induced tumors typically possess a diffuse, infiltrative growth pattern. 

However, the growth pattern may vary somewhat from tumor-to-tumor and may be 

related to physiological properties o f the biopsy from which it was obtained. For 

example, certain tumor borders may be well defined due to the tumor’s proximity to 

obstructing anatomical structures (ie. corpus callosum or brain stem) whereas other areas 

o f the tumor may disseminate gradually. As illustrated in Figures 13 and 14. h-ALA- 

induced PpIX fluorescence was confined primarily to tumor cells. In some cases, the
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fluorescence was verv' diffuse (Figure 13). while in other instances. PpLX production was 

confined entirely to the tumor that exhibited well-defined borders (Figure 14).

3.3.2 Quantitative Image Analysis 

Rectangular ROIs were drawn in central tumor areas and surrounding normal 

and or diffuse tumor tissue. Fluorescence quantification was performed in a total o f 10 

samples. O f these 10 samples. 5 distinct tumors were represented. Three samples (5a. 

5b. 5c) representing one tumor were examined following .\L A  administration. Figure 15 

outlines the relative fluorescence o f these samples. A fluctuation in PpIX production is 

evident with tumor-to-normal tissue uptake ranging from 4:1 (Sample 5a) to roughly 2:1 

in samples 5b and 5c. However, fluorescence levels in the tumor itself remain relatively 

constant throughout the samples. This consistency is also seen in the U-87MG cell-line 

tumors. The fluctuation exists in the surrounding normal tissue and is the factor 

responsible for the uptake disparity. These results may be somewhat misleading due to 

the nature o f biopsy tumors. The low tumor-to-normal tissue uptake in samples 5b and 

5c is likely due to the presence o f diffuse tumor infiltrate in the normal tissue ROI. 

Unfortunately, under 4X magnification it is often difficult to isolate normal tissue within 

the sample. It is conceivable that some fluorescence in normal tissue is the result o f 

tumor invasion. Therefore, it is possible that ALA  tumor uptake is superior to the uptake 

calculated in this study. From the data presented in Figure 15. the tumor-to-normal tissue 

uptake o f ALA in biopsy tumors is 2.4± 1.1:1. This tumor uptake corresponds with the 

2:1 ratio reported by Peng era/ (unpublished)^ in BCCs and the 3:1 ratio reported by

' Personal Correspondence
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Figure 11. A; Four-hour ALA-induced PplX fluorescence o f a large biopsv-derived 
tumor (t) in normal (n) rat brain. Note the diffuse tumor infiltration into 
normal tissue as fluorescence gradually dissipates with increasing distance 
from the central tumor. B: Corresponding HE section illustrating tumor (t) 
tissue and normal (n) brain tissue.
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Figure 12. A: Four-hour ALA-induced PplX fluorescence o f a biopsy-derived tumor (t) 
in normal (n) rat brain. Note the non-homogenous fluorescence distribution 
in tumor as well as the large tumor border (b) area. B: Corresponding HE 
section reflecting tumor (t) tissue, the border area (b). and normal (n) brain 
tissue.
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Figure 13. This photomicrograph is a t\pical representation o f biopsy-derived tumors.
illustrating gradual tumor diffusion/invasion (b) into normal (n) tissue as h- 
ALA-induced PplX fluorescence dissipates gradually from the central tumor 
(t) area.

Xiao et al (1998) in bladder tumors. However, the calculated uptake ratio is slightly 

lower than results reported by Stummer et al (1998c) and Lilge and Wilson (1998). 

Stummer ei al reported an ALA tumor uptake o f at least 6:1 in C6 glioma tumors (6 hour 

peak) while Lilge and Wilson found A LA  concentrations to be 100 times higher in VX2 

tumors than in surrounding white matter.

The primar) attraction for ALA  use relates to its superior tumor-to-normal tissue 

selectivity, especially in white matter (Lilge and Wilson 1998). A t this time, the specific 

origin o f ALA  selectivity is not knowTi. However, the mitochondrial benzodiazepine 

receptor (MBR) has been implicated as a factor in ALA selectivit) and. therefore, has 

been the subject o f recent interest. Two different benzodiazepine receptors exist:
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Figure 14. A: Four-hour h-ALA-induced PplX fluorescence o f a large biopsy-derived 
tumor (t) in normal (n) rat brain. In this case the border is ver> well defined. 
B; Corresponding HE section showing tumor (t) tissue in the normal (n) 
brain.
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neuronal benzodiazepine receptors that are restricted to the brain and peripheral 

benzodiazepine receptors (PBR) that exist in peripheral tissues such as adrenal glands, 

liver, and kidneys. The PBR is localized in the outer mitochondria membrane and is 

therefore referred to as the MBR. MBR has a high affinity recognition site for PplX and 

uses PplX as an endogenous ligand (Pastorino et al 1994). Since PplX is produced in the 

mitochondria it must traverse the inner and outer membrane. While the exact transport 

mechanism is not known, it is expected that MBR is the primai}' target for . \ L \  or h- 

.ALA-mediated PDT. It has been postulated that the frequency o f apoptosis may be 

improved by inhibiting anti-apoptotic factors associated with the MBR. The inhibition o f 

these anti-apoptotic factors in conjunction with A LA  or h-.ALA-mediated PDT could 

further improve treatment efficacy.

PplX production following h-ALA administration was studied in 7 samples 

representing 4 different tumors (see Figure 16). The calculated relative fluorescence 

values are reported in Table 7. The average tumor-to-normal tissue uptake ratio o f 

7.6:2:2.0:1 also corresponds to a study by Peng et a l (unpublished) . Further, tumor-to- 

normal tissue uptake ratios are similar from sample-to-sample and tumor-to-tumor 

(despite a variation in PplX levels in tumor tissue and normal tissue).

Results o f fluorescence in biopsy tumors are summarized in Figure 17. The results 

show that the superior tumor-to-normal tissue localization observed with the h-.ALA is 

due to very low levels o f PplX produced in normal tissue. As shown in Figure 17, PplX 

levels in tumor tissue following ALA administration were not significantly different from 

that obtained following h-ALA administration. From a clinical standpoint, the low levels

' Personal Correspondence
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Sample

HTumof 
■  Normal

igurc 15. RcKni\c .M .A-indiiccd fluorescence in hiop:>\ tumor. Sample 5 was obtained 
four hours after A L A  adm inistration.

Sample

I T  v .ino f 

iN i 't ’Tial

Figure 16. Relative h-.AL.A-induced fluorescence in biopsy tumors. Samples 6 ,7 ,8 , and 
9 w ere obtained four hours after h-ALA administration.
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IT './tkh

\LA Ikia
Photost'Rsiti/er

'igurc P . \\e r.ig c  rd a ti\c  fluorescence in biopsy tumors. The A L A  averages were 
obtained from Samples 5a. 5b. and 5c (Figure 15). The h-.ALA a\erages were 
obtained from Samples 6a. 6b. 7, S, 9a. 9b. 9c (Figure 16).

o f  PplX in normal brain li^Mie. and the resultant high localization ratio,make the h-.AI .A a 

promising candidate for in\ estigative brain tumor PDT.

F)ue to the lim ited number o f  adequately de\eloped tumors, the study o f  

photostris iti/e r d istribution in the rat brain follow ing s\stem ic adm inistration was 

unsuccessful. The \ast m ajority o f  clin ica l PDT treatments currently in \o lv e  the 

sxstemie (oral) administration o f  AL.A. w ith the exception o f  BCC and squamous cell 

eareiiioma (SCC) treatments in w hich .AL.A is administered topically. WTicn considering 

sxstemic adm inistration o f  .AL.A and its esters, the dose-lim iting factor relates p rim arily  

to li\e r  tox ic ity  (see Section 1.1.4). The most w idely accepted upper lim it for systemic 

administration o f  .AL.A is 60 mg kg ' body w eight. Relatix ely litt le  inform ation is known
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regarding the uptake o f h-ALA following systemic administration. However, h-.ALA is 

more toxic than ALA at lower doses (Peng -  unpublished) .

While the uniqueness o f the biopsy tumor model makes it appealing for use in w vivo 

GBM studies, the actual tumor take (number o f tumors that developed follow ing spheroid 

induction) in this study was rather poor. The proposed titration experiment and systemic 

administration experiments failed altogether because o f a 0% tumor take. A total o f 60 

rats were injected with biopsy-derived spheroids. 10 o f which exhibited noticeable tumor 

growth. The most probable explanation for this 17°.o tumor take relates to the tumor- 

inducing capabilities o f the biopsies themselves. Successful biopsy tumor induction 

depends on spheroid implantation technique. It is possible that variation in the depth o f 

canula placement could adversely affect and or preclude tumor development.

' Personal Correspondence
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CHAPTER 4 

CONCLUSIONS

Foundational toxicity data pertaining to the maximum tolerable ALA and h-ALA doses 

for local administration in the nude Rowett rat was derived. These animals can safely 

tolerate 99 mM ALA and 66 mM h-ALA when injected directly into the brain. Although 

it is unlikely that patients w ill receive a maximum tolerable dose, a maximal dose used 

for in VIVO studies permits a greater PplX production resulting in improved fluorescence 

quantification.

The bulk o f current in vivo experimentation with GBM involves cell-line derived 

tumors that grow as well-circumscribed, membrane-bound masses. Tumor development 

associated with cell-line experiments inaccurately represents GBM in patients thus 

limiting the applicability o f the research as it relates to the clinical setting. U-87MG cell- 

line tumors were used in this study to examine .ALA and h-ALA uptake and tumor 

selectivity as a comparison to the biopsy tumor model. Clearly, based on qualitative 

observation, photosensitizer transport differs between tumor types (outward diffusion to 

tumor boundary in cell-line tumors). Quantitative analysis indicates a 4.43:2.5:1 tumor- 

to-normal tissue uptake with a 7.4±3.0:1 border-to-normal tissue fluorescence following 

AL.A injection. Tumor-to-normal tissue uptake ratios o f 20±184:1 and 1.4±0.5:1 were 

observed in cell-line derived tumors following 1- and 6-hour post h-ALA injection.

46
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respectively. The validity o f this data is uncertain due to the small sample size 

investigated (2 animals).

Qualitatively, fluorescence images o f biopsy tumors indicate that the animal model 

accurately represents GBM in humans. Fluorescence intensity is greatest in the tumor's 

center and tapers with increasing distance from the tumor. Although a relatively small 

number o f samples were available for analysis, quantitative results agree with several 

other studies. Following ALA administration, the tumor selectivity was roughly twice 

that o f normal tissue (2.43:1.1:1). H-ALA administration resulted in a higher tumor 

uptake ratio o f 7.6±2.0:1. Due to its enhanced selectivity, the use o f h-.ALA as a PDT 

photosensitizing agent should be pursued in further experimentation.

Despite a relatively poor tumor take with the biopsy tumor model, the qualitative 

fluorescence results reflect the unique property o f diffuse tumor infiltration that is 

currently unavailable with other in vivo tumor models. As discussed in Chapter 3. tumor 

induction might be improved by obtaining a larger quantity o f biopsy tissue, w hich would 

improve the likelihood o f the biopsy containing viable cells. Decreasing the amount o f 

time the biopsy tissue remains outside o f an incubator (ie. faster patient-to-lab transport 

and tissue processing) could improve the tumor-inducing capability o f the spheroids. The 

agreement o f quantitative results with published values merits further study with ALA 

and h-ALA in this biopsy tumor model.
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CHAPTER 5 

FUTURE STUDY

Due to the novelty o f h-ALA, relatively little in vivo data regarding its uptake has been 

obtained. To complement the data acquired in these experiments (pertaining to local 

administration), the biodistribution o f h-ALA should be examined in the rat model 

following systemic administration. Due to complex deliver) logistics associated with 

local photosensitizer administration in brain tumor treatment, systemic (intravenous) 

administration in patients is preferred. Furthermore, the systemic administration o f h- 

.ALA has been reported to cause severe toxicity effects in vivo (van den Boogert ei al 

1998). Systemic h-ALA administration could result in liver and kidney abnormalities 

that could be o f negative consequence to the patient. The potential for patient toxicity 

provides rationale for further exploration of systemic toxicity effects in the animal model. 

I f  a high degree o f h-ALA tumor selectivity were achieved after systemic administration, 

it would be more clinically appealing for PDT than ALA.

To further examine h-ALA biodistribution, the effect o f varying photosensitizer 

concentrations on the production o f PpLX should be determined by means o f a titration 

experiment. Although the maximum tolerable photosensitizer dose was administered in 

this study (to optimize PpLX fluorescence), it would be beneficial to determine i f  tumor 

selectivity is jeopardized with decreasing dose and the extent o f diminished PpLX 

production. Clinically, patients are unlikely to receive the maximum tolerable dose (for

48
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toxicity reasons). As a result, the effect o f decreasing photosensitizer dose must be 

understood. Based on the superior h-AL.A tumor selectivity observed after one hour o f 

incubation (Sample 3. Figure 8). further study o f h-ALA biokinetics is also necessarv. 

Quantifying PplX production at varying time points would establish the optimal 

treatment time.

The final process o f in vivo photosensitizer investigations would involve PDT 

treatment itself. To determine the effect o f improved h-ALA localization. intra-operati\ e 

PDT w ould be performed on tumor-bearing rats. Follow ing a waiting period, the animals 

would be sacrificed and post-treatment tumor size would be measured. Smaller tumor 

sizes would indicate superior treatment (reflecting supenor photosensitizer uptake). In 

vivo studies o f this nature are difficult to perform; several logistical barriers must be 

overcome. Due to the relative size and depth o f tumors, and the small burr hole diameter, 

it would be very difficu lt to deliver the light dose to the entire tumor. This problem could 

be overcome by increasing the size o f the burr hole but rodents typically develop post- 

surgical infection w ith large-scale skull removal. Treatments would likely be performed 

prior to mature tumor development to permit irradiation o f the entire tumor. 

Unfortunately, short o f using magnetic resonance imaging to detect the tumor, there 

would be no method to determine the extent o f tumor development. .Additionally, the 

extent o f normal tissue damage following PDT could be examined by using a cell 

proliferation type assay (such as Ki67).

The potential benefit o f PDT in the treatment o f aggressive brain tumors warrants 

further pre-clinical study. Current clinical research in the field o f neurosurgery has aimed 

at developing local photosensitizer delivery systems for PDT. .A modified balloon
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catheter has been studied as a laser light delivery system that would be employed 

following GBM resection (Hirschberg et al 1999. Madsen et a l 2001 ). .At present. .AL.A 

has been proposed as the photosensitizer for clinical trials because o f its tumor selectivity 

following systemic (oral) administration. For h-ALA to be used in conjunction with the 

proposed balloon catheter (assuming tumor uptake following local administration only) 

the catheter must be modified to deliver photosensitizer. It has been suggested that a 

thin, permeable membrane surrounding the balloon be created to allow diffusion o f h- 

ALA into the resection cavity. However, pre-clinical studies o f tumor uptake following 

systemic h-ALA administration should be performed prior to modifying the catheter 

mechanism. I f  h-ALA demonstrates sufficient localization in tumor tissue following 

systemic administration, several logistical elements regarding its clinical use would be 

solved.

The role o f the MBR in .ALA-induced photodamage is currently being studied. The 

mitochondnal permeability transition (PT) pore regulates mitochondna membrane 

permeability. PT may be inhibited or induced by the interaction o f anti-apoptotic or pro- 

apoptotic factors with the PT pore. Current research aims at using agents that target the 

PT pore in conjunction with .AL.A-mediated PDT to overcome apoptosis-mhibiting 

factors such as Bcl-2 proteins. This form o f therapy would enhance the effect o f PDT by 

inducing apoptosis in tumor cells.
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